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ABSTRACT.The so-called logical combinatorial approach to Pattern Recognition is

presented, and works (mainly in Spanish and Russian) that are not ordinarily available, are

exposed to the Western reader. The use of this approach for supervised and unsupervised

pattern recognition, and for feature selection is reviewed. Also, an unified notation

describing the original contributions is presented, thus rendering this important area more

readable.

Our review is not exhaustive; nevertheless, most significant works are enclosed. Our hope

is to motivate the reader to inquire further in these works.

This paper serves as an introduction to three articles on the logical combinatorial approach

that appear in this issue of Pattern Recognition.

KEYWORDS: Pattern recognition, classification, feature selection, testor theory, logical

combinatorial Pattern Recognition.

INTRODUCTION

* Centro de Investigación en Computación del IPN, P. O. Box 75-476, 07738 Mexico City, MEXICO.
fmartine@cic.ipn.mx



2

Several tools have been proposed since the beginning of Pattern Recognition, to solve three

important problems: feature selection, supervised classification, and unsupervised

classification or clustering. Fukunaga [1] defines feature selection for representation as a

mapping from the original features (or variables) into those most efficient; tools are used

for this purpose such as the discrete Karhunen-Loéve expansion, the same expansion for

random processes, the estimation of eigenvalues and eigenvectors, principal component

analysis [2], and factor analysis [3]. Also Feature selection for classification is defined in

[1] as: given two or more classes, select those features that are most efficient to preserve

class separability. To solve this problem, one resorts to discriminant analysis, non

parametric discriminant analysis, sequential selection of quadratic variables, as well as

several selection criteria of subsets of features that optimize some separability criteria

among classes.

In supervised classification, the problem is to recognize, given a set of objects grouped into

classes, in which one (or more than one) of these classes new objects or measurements

belong. Several classifiers have been proposed: maximum likelihood; Bayesian, (1-nn), k

nearest neighbors (k-nn), linear, quadratic, and other [1, 4-6].

In unsupervised classification, a sample of objects is at hand, but their clustering into

groups or classes is unknown. The problem consists in defining such classes. To solve these

problems, tools such as ISODATA [7], C-means [8], unsupervised Bayesian classifiers [6],

grouping and dividing hierarchical classifiers [9], graph-theoretic classifiers [10, 11] are

used, among others.

Work mentioned so far falls under Statistical Pattern Recognition, characterized because it

works with the descriptions of the objects under study, contrasting with syntactic structural

recognition [4], which works with the parts of the objects under study. This paper reviews
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several articles developed under the Logical Combinatorial Pattern Recognition approach,

in the three areas above mentioned. This approach, as the statistical approach, works with

the descriptions of the objects. In this issue, a paper [12] introduces the concepts of testor,

typical testor, logical-combinatorial approach, fuzzy testor, and others.

Let U be a (perhaps infinite) universe of objects, and, following the statistical approach, let

us consider a given finite sample M={O1,...,Om} of such (descriptions of the) objects. We

shall denote by R={x1,...,xn} the set of features or variables used to study these objects.

Each of these features has associated a set of admissible values (its domain of definition)

Mi, i=1,...,n. These sets of values, in contrast to the other approaches, can be of any nature:

variables can be quantitative and qualitative simultaneously. Each of these sets contains a

special symbol denoting absence of information (missing data). Thus, some variables are

numeric; other, symbolic; incomplete information about some objects is allowed. This will

turn out to be a fundamental feature of this Pattern Recognition paradigm. By a description

of an object O we understand an n-tuple I(O)=(x1(O),...,xn(O)) where xi:M→Mi, for i=1,...,n

are the variables or features used to describe it. Over Mi no algebraic, topologic or logic

structure is assumed. Any of the Pattern Recognition problems mentioned above is

formulated from a set of descriptions of msuch objects.

FEATURE SELECTION

Let M be a given set of descriptions of m objects from U in terms of the features of R. We

assume that the descriptions of M are structured in r subsets (classes) K1,...,Kr (not

necessarily disjoint, not necessarily crisp). Under these conditions two kinds of problems

can be formulated: feature selection for classification; same for description. The first case
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tries to find the subset(s) of features that determine representation subspaces of the objects

which are most appropriate for a later problem of supervised classification. In the second

case the objective is not classification of new objects, but to determine the informational

relevance of each of the features, or of subsets of them. Feature selection in this field was

initiated by Dmitriev, Zhuravliov and Krendeleiev [13]. A recent book [25] goes further

into this area.

Ortiz-Posadas [14] applies the logical-combinatorial model of Pattern Recognition Theory

[15] to the computer-assisted medical diagnostic and prognostic. She uses three models: a

medical model, of Heathfield et al. [16], for histopathologic diagnosis of breast diseases; a

mathematical model, provided by the logical-combinatorial model of Pattern Recognition;

and a computational model. Her dissertation explains how to select a suitable set of

variables for the case in question. Some medical results appear in [17-18].

A CINVESTAV report [19] presents an extension to typical testor using analogy between

patterns, and an algorithm to detect fuzzy typical testors of a training matrix.

A short letter [20] extends the expression to determine the feature relevance (that is, how

relevant or discriminant a given feature of an object is) in crisp and fuzzy environments,

and introduces an algorithm (different to that of [19]) to compute all the fuzzy typical

testors of a training matrix.

Carrasco-Ochoa [21] analyzes how changes in the training matrix affect its typical testors.

He does this for three kind of typical testors: (1) those of Zhuravlev [22, 23]; (2) the ε-

typical testors, which use a similarity function between two objects that makes two objects

similar if they differ in ε (an integer≥0) or less feature values; (3) those of Goldman [24].
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Lazo-Cortéset al. [12], in this issue, give several contrasting  definitions of testor, and

their application in supervised classification. This introduces the logical combinatorial

approachto Pattern Recognition. An excellent introduction is also in a book [25].

Ozols and Borisov [26], in this issue, introduce shadows composition in order to solve

fuzzy supervised classification.

Martínez-Trinidad and Ruiz-Shulcloper [27], in this issue, use the fuzzy clustering criteria

of the logical-combinatorial approach, to do unsupervised pattern classification of non-

numerical terms belonging to a vocabulary.

SUPERVISED CLASSIFICATION

In this kind of problems, we assume that the universe U is structured in a finite number

K1,...,Kr of proper subsets, called classes, and from each of them we have a sample of

descriptions of objects, the so-called training matrix MA={  K1∪ ,...,∪ Kr }. The problem is to

find the membership relations from a new object from U (outside the given samples) with

the r classes. This relationship does not have to be all or nothing. The logical combinatorial

approach deals with spaces without algebraic (or of any other kind of) structure. The

representation space is simply a Cartesian product, which also has the peculiarity of being

heterogeneous, that is, each of the sets forming it can be of different nature: a set of real

numbers, a set of labels, a set of truth values from a given logic, etc. An example of this

appears in medical diagnosis problems, where descriptions take the form I(O)=(black,

female, 45, 38.60, 1500, ?, slight,...), where ? means absence of information. In other

disciplines, too, such as Geo Sciences, Sociology, Pedagogy, Marketing, etc. (the so called
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soft sciences), objects are described in terms of qualitative and quantitative variables. Thus,

the tools herein presented.

Most significant models of supervised classification are those works based on partial

precedences. There are three models: voting algorithms, Kora model, and algorithms based

on representative sets.

Voting algorithms

These were conceived in a simplified manner by Zhuravlev and his group [28]. The main

idea is partial precedence, that is, partial analogies. An object can resemble another object

not in its totality; those parts which do resemble each other can give information about

possible regularities; of course not all of the same magnitude. For practical problems in the

disciples cited above, this model was very limited, since it only allows object descriptions

based in Boolean variables. A later paper [25, 29] added some results, producing an

improved parametric model comprising six steps: 1) defining the system of support sets; 2)

defining the similarity function; 3) row evaluation, given a fixed support set; 4) class

evaluation for a fixed support set; 5) class evaluation for all the system of support sets, and

6) resolution rule. Thus, to define a voting algorithm, is to define a set of parameters for

each of the above six steps.

A support set is a non empty subset { }
sii xx ,...,

1
=Ω  of features which shall be used to

analyze the objects. We denote as OΩ  the subdescription in terms of the features of Ω.

Thus, a system of support sets denoted by AΩ  are several support sets which together will

allow analysis of the objects to be classified, comparing them with objects in each one of

the classes Ki i=1,...,r. Note that said analysis is done paying attention to different parts or
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subdescriptions of the objects, and not analyzing the complete descriptions. Examples of

systems of support sets are the set of typical testors, combinations with a fixed cardinality,

combinations with variable cardinality, the power set of features, etc.

A similarity function defines the form to compare the descriptions (subdescriptions) of the

objects. Ruiz-Shulcloper and his group [25, 29] propose to do this starting by determining

the comparison among the values of features, and evaluating these comparisons through a

similarity function. A simple example of similarity function is

( ) ( ) ( )( )∑
Ω∈

=ΩΩΓ
px

jpippji OxOxCOO ,, .

When the systems of support sets and the similarity function have been defined, the voting

process starts in the stage of row evaluation; that is, the similarity between the different

parts of the objects already classified and those to be classified is analyzed. Each row of

MA (each object Oi∈ MA) is compared with object O to be classified using the similarity

functionΓ. This evaluation is a function of the similarity values among the different parts

being compared. An example of this evaluation is ( ) ( ) ( ) ( )OOPOOO iii ΩΩΓΩ=Ω ,, γϕ

where we consider a weight γ(Oi) associated to each object Oi from MA and a weight P(Ω)

for the support set Ω.

The class evaluation for a fixed support set Ω consists in totaling the evaluations obtained

for each of the objects MA with respect to the object O to be classified. This total evaluation

is a function of the row evaluations already obtained. An example of this evaluation is:

( ) ( )∑
=

ΩΩ =
jKt

t

j

j OO
K

O
,...,1

,
1 ϕϕ , the upper index refers to the class Kj.

In the class evaluation for all the system of support sets, evaluations are totaled for all the

system of support sets. Following our example, this step could be expressed as follows:
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( ) ( )∑
Ω∈Ω

ΩΩ
=

A

OO j

A

j ϕϕ 1
.

Finally, the resolution rule is a function that establishes a criterion taking into account each

voting thus obtained, and reaches a decision concerning the relations of the object to be

classified with every class of the posed problem. In general, this function has the following

form: ( ) ( )( ) ( ) ( )( )OOOOr r
r ααϕϕ ,...,,..., 1

1 = . A similar manner to compute the values of

αi(O) i=1,...,r., can be: ( )
( ) ( )







 ≠∀>
=

otherwise

jiOOif

O

ji

i

0

1 ϕϕ
α .

This model for supervised classification has been applied to several practical problems [18,

30-33].

An extension to the above model is proposed by Lazo [34], where he lets the features be

numeric or linguistic; that is, values can be some labels or words of natural languages

(fuzzy variables). The similarity between values of the same feature is evaluated in the

interval [0,1], considering as a special case a two-valued comparison criteria. An important

element of this new model is that it covers problems considering fuzzy membership (in

Zadeh’s sense [35]) of the objects to the classes. In this manner, he can work with fuzzy

support sets in which each feature belongs to a certain degree to the support set. For

instance, fuzzy Goldman testors can be used as support sets. The evaluation of the

similarity between objects, proposed in this work, is summarized in the following general

expression: ( ) ( ) ( ) ( )( )∑
Ω∈

Ω
−Ω=ΩΩΓ

px
jpipppji OxOxCxOO ,,

1 µ . This expression considers

the degree of membership of feature xp to the support set Ω. In addition, if Ω is a fuzzy set,

the scalar cardinality (see Zimmermann [36]) is considered. In the case of linguistic
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variables, one can use as criteria for comparing values of features the Hamming, Euclid or

Kolmogorov-Fomin criteria, which are obtained from the homonymous distances between

fuzzy sets, see [37]. To evaluate by class using a fixed support set, one works with

( ) ( )∑
=

ΩΩ =
jKt

t

j

j OO
K

O
,...,1

,
1 ϕϕ , if in the formulation of the problem each object belongs to

only one class. To consider degrees of membership of each object to each class, the

expression ( ) ( ) ( )∑
=

ΩΩ =
j

j

Kt
ttK

j

j OOO
K

O
,...,1

,
1 ϕµϕ  is used, where Kj   denotes the scalar

cardinality of class Kj, and ( )tK O
j

µ  denotes the degree of membership of object Ot to class

Kj, j=1,...,r. For evaluation by class for all the system of support sets, one considers the

average of the evaluations, in similar manner as the former model. Finally, in the resolution

rule can be considered each ( )Ojϕ j=1,...,r, for each class as the fuzzy membership degrees

to the classes, or as the votings for belonging to each class.

Finally we can mention the voting algorithm for linguistic variables [34]. In this model the

problem of classification is posed in similar terms to defining the testors to certain degree,

that is, considering that objects belong with certain degree to each class. Similarity

functions are defined between object descriptions in terms of linguistic variables, as well as

expressions for row evaluation of a fixed support set and for all the system of support sets.

Kora Model

These models start with Bongard’s group [38], who propose the Kora-3 algorithm for

solution of Geophysics and Geology problems. This was the first algorithm to be used for

solving supervised classification in the Geological environment.
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Kora-3 rests on the idea that classes are formed by objects fulfilling certain complex

properties, composed by the conjunction of three simple properties. This algorithm is very

limited since it only allows Boolean description of objects, and works only with two non-

intersecting classes. The basic idea is partial precedence (in similar form to the voting

algorithms), but restricted to the use of relations of any three features. A subset of three

features { }
321

,, iii xxx=Ω  and a combination of values (a1,a2,a3) for Ω, form a complex

feature of  class Ki if and only if the triplet (a1,a2,a3) appears at least δi times in the

subdescriptions corresponding to the objects of Ki and does not appear in the

subdescriptions of objects of the other class. Those objects in which this combination

appears are called objects characterized by the complex feature. On the other hand, objects

characterized by less than δi complex features form the reminder of class Ki. In this manner,

if two complex features r1 y r2 characterize exactly the same objects, they are called

equivalent, and if r1 characterizes all objects characterized by r2 and at least one more, then

it is said that r1 is stronger than r2. Based on these concepts the Kora-3 algorithm is defined

in three steps: (1) learning step; (2) re-learning step; (3) classification step. In the learning

step the complex features are computed for each class using parameters δ1 andδ2. In the re-

learning step complementary complex features are computed using new thresholds δ'1<δ1

andδ'2<δ2 in the remainder of the classes. Finally, the classification step counts how many

complex features of each class characterize or vote in favor of the new object to be

classified, and selects the class that provides the largest number of complex features. This

algorithm became very limited given the characteristics of practical problems, hence the

first extension proposed [39, 40] modified the concept of a complex feature, allowing now

a combination of three values to appear δi times (sufficiently) in the classes and δ' times
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(sufficiently little) in the other class. Later, De la Vega-Doria et al. [41] propose an

extension which allows the use of any system of support sets and not only support sets

formed by three features, it is allowed to work with more than two classes, overlap among

classes is allowed, the type of variables can be of any sort, lack of information is allowed,

and in the most general case, classes can be fuzzy, that is, object belong to a class to a

certain degree. To reach this extension the concept of complex feature was modified once

more, giving rise to the concept of fuzzy δi-complex feature. A combination of values

a=(ai1,...,aip) for the features of a support set { }
sii xx ,...,

1
=Ω , forms a δi-complex fuzzy

feature(a,Ω) for Ki, with degree µi((a,Ω)), i=1,...,r, if and only if: a) ∃ O ∈ K'i | xi1(O) = ai1

^ ... ^ xip(O) = aip; b) i

m

j
jij OaO δµ ≥ΩΓ∑

=1

)(),( ; c) '

1

))(1)(,( i

m

j
jij OaO δµ ≤−ΩΓ∑

=

; and d)

µi((a,Ω)) =

∑

∑

=

=

ΩΓ

m

j
ji

m

j
jij

O

OaO

1

1

)(

)(),(

µ

µ
, where δi>0 and δ'i>0 are thresholds. When working with

crisp classes, the assumption is that µi((a,Ω))=1 for all (a,Ω) associated with Ki i=1,...,r.

This redefinition allows (as formerly mentioned) to handle any system of support sets. In

addition, it is considered in the expression the case of classes being fuzzy and each δi-

complex feature has associated a degree of membership to said set, calculated in the basis

of the similarity of the combination of values a with the corresponding subdescriptions in

the respective class. The set of all δi-complex fuzzy sets for Ki is denoted as RC(Ki). On the

other hand, the set of all objects O∈ Ki such that ∑
∈Ω

<ΩΓ
)(),(

),(
iKRCa

iaO η  will be called ηi-

fuzzy reminder of the class Ki and is denoted by r(Ki). In the same manner as in the Kora-3
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algorithm, the complementary complex features are computed in the remainder of the

classes, but now using the new formulation. To each complex feature and each

complementary complex feature, one computes a weight or importance P((a,Ω)) as

∑∑
∈Ω∈

ΩΓ=Ω
'

)(),()()),((
ijk KO

j
x

k OPaOxPaP whereP(xk) and P(Oj) are the weights of feature xk

and of object Oj. Finally, to classify a new object O, it is compared with all δi-complex

fuzzy features of each class Ki i=1,...,r., in the following manner:

∑
∑

∈Ω

∈Ω

ΩΩΓ

ΩΩΩΓ
=

)(),(

)(),(

'

'

)),((),(

)),(()),((),(

)(

i

i

KRCa

KRCa
i

i aPaO

aPaaO

maxO

µ
µ .

Model based on representative sets

This model [42] is based in partial precedences and representative sets. The idea is to

evaluate information in favor and against objects belonging to classes, and to consider that

the parameters used for classification should be associated with each class. In contrast with

previous models, this model can use a different system of support sets for each class. The

rationale is that, for a particular class, a combination of features or ranges in values can

provide valuable information to characterize such class, but one can not conclude that the

same combination behaves similarly for another class. Hence, the model proposes to

determine the system of support sets for each class. {Ω} j denotes the system of support sets

associated with class Kj and CKj represents the complement of the class. We define the

positive representatives set 1jM  for class Kj with respect to Ω∈ {Ω} j as the set of all values

corresponding to Ω in the subdescriptions of the objects in Kj that are present ηj times and

are not present in in CKj. Similarly, the negative representatives set 0jM  for class Kj with
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respect to Ω is defined as the set of all values corresponding to Ω in the subdescriptions of

the objects in CKj that are present ηj times and are not present in Kj. The set of all values

corresponding to Ω in the subdescriptions of the objects of Kj that are not elements neither

of the negative representatives set nor of the positive representatives set form the neutral

set of combinations for class Kj denoted by ∆
jM . The algorithm rests on these three

concepts. This method differentiates between the informational value of features and of

objects, which can be calculated in some other way, see [20, 25], or be given by the expert.

The first proposal of this model is Boolean, that is, considers descriptions of objects formed

by Boolean features only. Thus, the algorithm is: 1) define the systems of support sets (and

their associated parameters) for each class; 2) compute the sets 1
jM , 0

jM  and ∆
jM  for each

class; 3) to classify a new object O, compute ( )Oj Ωϕ  for each support set Ω of each class

Kj j=1,...,r. This expression is defined in three cases: a)

( )Oj Ωϕ = ( ) ( )( ) ( ) ( )( )
ts iiii OpOpxpxp Ω++Ω++ ,...,,...,

11
 if ΩO∈ 1

jM , where p(xi) is the weight

of the variables conforming Ω and p(ΩOi) means the weight of object Oi∈ Kj that coincides

with O according to Ω;

b) ( )Oj Ωϕ = ( ) ( )( ) ( ) ( )( )
ts iiii OpOpxpxp Ω++Ω++ ,...,,...,

11
 if ΩO∈ 0

jM , where p(xi) is as

before, and p(ΩOi) means the weight of object Oi∈ CKj that coincides with O according to

Ω; c) ( )Oj Ωϕ =0 if ΩO∈ ∆
jM . 4) In this step the total evaluation ( )Ojϕ  is computed for

each class Kj j=1,...,r., as ( )
{ }

( )
{ }
∑
Ω∈Ω

Ω
Ω

=
j

OO j

j

j ϕϕ 1
. 5) Finally, compute the r-tuple

(α1(O),...,αr(O)) in which one finds the membership relation α j(O) of object O for each one
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of the r classes, as follows: ( )

( )

( )

( )












=

<

>

=

0*

00

01

Oif

Oif

Oif

O

j

j

j

j

ϕ

ϕ

ϕ

α

��

��

��

. This model proved to be of limited

use for solution of practical problems, where objects are described by features that can take

any kind of values. Thus, an improvement is proposed in [25], which allows such

descriptions (and values) but defines the comparison criteria to yield Boolean values. In this

manner, a similarity function among two subdescriptions is defined, which can be used to

determine if a subdescription belongs to 1jM , 0
jM or ∆

jM  in the same manner as in the

Boolean case, but now verifying if they are similar or not. For this, the following

expressions are evaluated:

( ) ( ) ( )( ) ( ) ( ) ( ) ( )











ΩΩΓ+ΩΩΓ++=Ω ∑∑

∈∈

+

jiji

s
CKO

ii
KO

iiiij OOOpOOOpxpxpO ,,,..., 011
χχϕ  and

( ) ( ) ( )( ) ( ) ( ) ( ) ( )











ΩΩΓ+ΩΩΓ++=Ω ∑∑

∈∈

−

jiji

s
KO

ii
CKO

iiiij OOOpOOOpxpxpO ,,,..., 011
χχϕ , where

p(xi), p(Oi) are weights associated to the features and objects, χ0, χ1 are weight factors and

Γ takes values opposite to those of Γ. We then decide if ΩO is in 1
jM , 0

jM or ∆
jM  as

follows: a) ΩO∈ 1
jM  if ( ) ( ) δϕϕ >Ω−Ω −+ OO jj ;b) ΩO∈ 0

jM  if ( ) ( ) δϕϕ >Ω−Ω +− OO jj ; and

c) ΩO∈ ∆
jM  if ( ) ( ) δϕϕ <Ω−Ω −+ OO jj . Except for these changes, the previous algorithm

remains the same.

Carrasco [43] proposes an extension to [42], in which objects can be described by features

of any kind, classes do not need to be disjoint; they can be fuzzy, although imposing the

restriction that for every class there must exist at least one object that is closer to totally
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belonging to the class than of not belonging to the class, which is reasonable, since this is a

problem of supervised classification. This extension is reached by extending the concept of

positive, negative and neutral representatives sets, as follows. Let Ω be a support set for

class K
j
. The positive representatives set for class K

j
 with respect to Ω, denoted by 1

jM , is

defined as the set of all ΩOp such that: 1) ∃ O∈ MA | ΩO=ΩOp;

∑
=

≥ΩΩΓ
m

i
jijpi OOO

1

)(),( ηα��� ;
jijpi OOO δα <−ΩΩΓ∑

P

� L

� ))(1)(,()3 ;

∑

∑

=

=

ΩΩΓ
=Ω

m

i
ij

m

i
ijpi

pj

O

OOO
O

1

1

)(

)(),(
)()4

α

α
µ� , where µj(ΩOp) denotes the degree by which the

combination of values ΩOp is positive representative of Kj; α j(O) is the degree of

membership of O  to the class Kj and (1-α j(O)) represents the degree of membership to the

complement of Kj, ηj represents the minimum similarity threshold of ΩOp with all the

objects in Kj; δj represents the maximum similarity threshold of ΩOp with respect to all

objects in the complement of Kj. Analogously, the negative representatives set 0
jM  is

redefined by interchanging in expressions 2), 3) and 4), α j(O) by (1-α j(O)). The

combinations ΩOp that are not in 1
jM  nor in 0

jM  will be neutral combinations and shall be

denoted by ∆
jM . The informational relevance of a positive (negative) representative ΩOp

for a class Kj, is denoted by P(ΩOp), and it is computed by the expression

( ) ( )( ) ( ) ),(),...,)
1 LLM

P

�L

���� ΩΩΓ++=Ω ∑
=

aOpxpxpOP iiip s
α . Given an object O to classify,
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the total positive evidence, denoted by +
M

ϕ (O), and the total negative evidence, denoted by

−
M

ϕ (O), are computed for each one of the classes Kj, j=1,..,r as follows:








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ΩΩΩΩΓ
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Ω∈ΩΩΩ∈Ω
+

uzzy setssses are fif the claOOO

risp setssses are cif the claOO

p
O
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O
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p

p

)))

))

},...,
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������������

�����������

���

�
M

M
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M
�

�
M

M
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and then the total evaluation jϕ (O) is computed for each class Kj, j =1,..,r, as follows:
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A detailed study of supervised classification algorithms based in partial fuzzy precedence is

given in [44].

In Logical Combinatorial Pattern Recognition, some other models of supervised classifica-

tion have been proposed. Such is the case of algorithms based in the weight of the patterns

[25, 45], among which we find: voting algorithms; those based in the ideal of the class, and

algorithms based in exactness thresholds.

Another model of supervised classification is the algorithms based in typicality and

contrast. This model was initially proposed by Diordenko and Vaskovskii [46] for the

solution of problems with geologic anomalies, its purpose was not to classify geological

regions, but to structure their data so as to facilitate the classification. Based on these ideas,

Vega [47] extended the algorithm and developed a supervised classification algorithm

based in notions of typicality and contrast. This particular algorithm has been used to

classify patients with cleft palate [48].

UNSUPERVISED CLASSIFICATION

In this problem it is assumed that the structure of universe U is not known. To find such

structure, in general a subset MI of U, the initial sample, is given. On occasions the number

of groups that there should result (or the number desired), is known, and the problem is

termed restricted unsupervised classification. On other occasions, this number is also

unknown (free unsupervised classification). Here, only a representation space that is a

Cartesian product without further properties is used. The problem is precisely to find the

classes, the groupings. Such groups need not be formed by crisp sets.

Free unsupervised classification
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The first tools in this field appear in Sirotinskaia [49], who proposes the CLASS algorithm.

This is a hierarchical algorithm and was written to solve geology prospecting problems. It

is based in the concept of a compact set. A set NUr is a compact set if and only if

a)∀ Oj∈ MI

[Oi∈ NUr ∧  ( { }max (O O )
O MI

O O

i t
t

t i

∈
≠

Γ , =Γ(Oi, Oj)≥β 0 ∨ { }max (O O )
O MI

O O

j t
t

t j

∈
≠

Γ , =Γ(Oj, Oi) ≥β 0)] ⇒  Oj∈ NUr;

b)∀ Oi,Oj∈ NUr ∃ O ,...,Oi i1 q
∈ NUr

[Oi = Oi1
∧  Oj = Oi q

∧ ∀ p∈ {1,...,q-1}; [ { }max (O O )
O MI

O O

i t
t

t i p

p∈
≠

Γ ,  = Γ(Oi p
,Oi p+1

 ) ≥ β 0 ∨

{ }max (O O )
O MI

O O

i t
t

t i p+1

p+1∈
≠

Γ , =Γ(Oi p
, Oi p+1

)≥β 0]]

c) Every isolated object constitutes a β 0-compact (degenerate) set. This definition was

proposed by Martínez [50,51]. The definition of [49] does not appear here.

The CLASS algorithm is summarized as follows: step 1) Compute the values of all possible

pairs of MI; that is, form a similarity matrix MS=( )
mmji OO
×

Γ , where m is the number of

objects of MI; step 2) Compute ( ) ( )∑ ∑−= +=
Γ

−
= 1

1 10 ,
1

2 m

i

m

ij ji OO
mm

β ; step 3) Compute the

β0-compact sets; step 4) Compute the similarity measures among all compact sets

NU1,...,NUc using the expression: ( ) ( )∑ ∑=
Γ=Γ s vNU

t

NU

q qt
vs

vs OO
NUNU

NUNU
1

,
1

, ; step

5) compute a new β0' from the matrix of comparisons among nuclei, and repeat steps 4 and

5. In this same sense Ruiz et al. [29] propose a modification based in the HOLOTYPE

algorithm (originally proposed by Y.A. Voronin et al. [52] for supervised classification)

giving rise to a new algorithm analogous to CLASS but now using the concept of
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connected set –which is the one used by HOLOTYPE. A set NUr is a connected set if and

only if: a) ∀ Oi,Oj∈ NUr ∃ O ,...,Oi i1 q
∈  NUr

[Oi=Oi1
∧  Oj= Oi q

∧ ∀ p∈ {1,...,q-1} Γ(Oi p
, Oi p+1

)≥β 0]

b) ∀ Oi∈ MI [(O j∈ NUr ∧ Γ (Oi, Oj )≥ 0β  ) ⇒  Oi∈ NUr]

c) Every β 0-isolated object is a β 0-connected (degenerate) set. This definition was

proposed by Montellano [53, 54]. The definition of connected set of [52] does not appear

here.

Also, the TAXDIF model [53, 54], based on graphs, which allows the descriptions of

objects to be given by features of any kind, was developed. It proposes crisp and fuzzy

clustering criteria for grouping of objects, similar to the compact and connected criteria

used in CLASS and HOLOTYPE. A significant contribution in this new model is the

definition of crisp grouping criterion Π. This definition generates several grouping criteria,

including the connected and compact criteria. Similarly, the model defines the concept of

fuzzy grouping criterion Πd which allows, from a crisp structuring generated by a crisp

criterion Π, the generation of a fuzzy structuring of the original sample. That is, in the

result, each object belongs in different degree to each of the clusters (clouds). Also,

TAXDIF is flexible in handling several similarity functions, which can be partial functions

and be defined using support sets, such as those used in supervised classification, see [25].

As example, the membership function defined for connected sets is:

( )
{ }









Γ

=
=

∈
�
�������������

������

�

ML
^2?182

LU

L1%

LUM

U

),

}{1

}

µ . The detailed definition of other fuzzy

criteria is given in [51]. Membership of an object in a crisp connected set is given by the
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fulfillment of certain similarity properties, which establish the definition of crisp grouping

criterion. Similarly, the degree of membership of an object Oi to a connected (fuzzy) cloud

is given in terms of the degree of fulfillment of said properties.

This model is an alternative to the C-means fuzzy algorithm, which is defined for numeric

features. The model of TAXDIF algorithms can be described by the following steps: step 1)

Define the similarity function Γ; step 2) Determine threshold β0; step 3) Define the fuzzy

grouping criterion Πd ; step 4) Generate the family of crisp groupings τ; step 5) Define the

family of fuzzy groupings or clouds corresponding to τ. Varying the parameters results in

different algorithms.

Due to the features of the model and its potential in the solution of problems such as those

present in soft-sciences, a theoretical study was performed, about the set relations among

the groupings generated by several grouping criteria.

Fig. 1

This study shows that for the same β0 value, the structures (groupings) found for several

grouping criteria are related (see figure 1). For instance, connected groupings are unions of

compact groupings. Other relations are in Martínez et al. [51]. This hierarchy imposes an

order among the structures or groupings, following their generality, which can be of use in

practice. Low levels contain very specific categories (including isolated prominent objects);

upper levels are formed by more general structures. This disposition of said structures can

provide, for a same universe of objects, different visions, with different abstraction levels.

[55] proposes these tools for the solution of semantic grouping problems, in this case
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objects are related key words from documents, and the problem is to find word groupings

based in semantic similarity. [27] proposes an algorithm for constructing classes of a

thesaurus.

Now a days, unsupervised classification tools for large information volumes are being

developed [56]. Also, conceptual unsupervised clustering has been proposed [57-60]. In

these works one finds contributions to the so-called (in machine learning) unsupervised

learning or conceptual clustering. The problem is: from a set of objects, find how these

objects are grouped and, in addition, find the properties or concepts that objects in each

group satisfy. This research line has aroused much interest, in recent years, for its potential

in data mining problems.

Restricted unsupervised classification

Logical Combinatorial Pattern Recognition has devoted less effort to these problems.

Nevertheless, algorithms have been proposed where the number of desired clusters is

specified a priori. For instance, García and Martínez [61, 62] proposed a modification to

the C-means algorithm allowing object descriptions to be of any nature. Keeping the

original structure of the algorithm, they use, instead of a distance measure, a similarity

measure among objects, such as those of [25]. The similarity function must fulfil: 1)

( )kj OO ,Γ ∈ [0,1] for 1≤j≤m and 1≤k≤m (m is the number of objects to group); 2)

( )jj OO ,Γ =1 for 1≤j≤m; and 3) ( )kj OO ,Γ = ( )jk OO ,Γ  for 1≤j≤m and 1≤k≤m. Let uik be the

membership degree of object Ok in grouping Ci, and let Rcxm be the set of all real matrices

c×n. Any c-partition [61] of the data set is represented by a matrix U=[uik]∈ Rcxm, which

satisfies: 1) uik∈ {0,1} for 1≤j≤m and 1≤k≤m; 2) 1u
c

1i ik =∑ =
 for 1≤k≤m; and 3)∑ =

>
m

1k ik 0u  for
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1≤i≤c. Then, the partition matrix U is determined by the maximization of the objective

function given by J(U)= ( )∑ ∑= =
Γc

i

m

k k
r
iik OOu

1 1
,  where ( )k

r
i OO ,Γ  is the similarity between

the most representative object riO (“the center”) in grouping Ci and object Ok. Notice that in

this case “the center” is an object belonging to the sample, instead of a fictitious element

such as in classical C-means. Working with a similarity measure (and not with a distance)

implies that the calculation from seeds can not be realized by using centroids (as the

original work does, since it works in multidimensional metric spaces). [61, 62] proposes a

way to compute these representative objects, using similarity. Once these elements are

found the functional J(U) is maximized when uik is determined as follows:

( ) ( ){ }







 Γ=Γ

=
≤≤

otherwise

OOmaxOOif

u

k
r
q

cq
k

r
i

ik

0

,,1
1

�

. That is, object Ok shall be assigned to the cluster

having its representative object most similar with Ok.

Thus, the algorithm is: step 1) Select c objects in the sample as initial seeds. Fix ni’, the

maximum number of iterations, and set ni=0; step 2) Compute the partition matrix U=U(ni)

using the previously mentioned initial seeds; step 3) Determine the representative objects of

the groupings of matrix U(ni); step 4) Compute the partition matrix U(ni+1); step 5) If the set

of representative objects is the same as in the last iteration, stop. Otherwise, increment

ni=ni+1; step 6) If ni>ni’  stop. Else, go to step 3.

More recently, other restricted unsupervised classification algorithm [64] has been

proposed, based in the concept of connected set. By introducing suitable concepts and

results, this algorithm works with any similarity function and with data described by

features of any kind. Also, it determines theoretically how many different ways there are to
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partition a space into connected components, the value of thresholds β0 characterizing

them, and the cardinality of each of these partitions.
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