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ABSTRACT.The so-calledlogical combinatorial approachto Pattern Recognition is
presented, and works (mainly in Spanish and Rugsian are not ordinarily available, are
exposed to the Western reader. The use of thisoapprfor supervised and unsupervised
pattern recognition, and for feature selection igieed. Also, an unified notation
describing the original contributions is presentiais rendering this important area more
readable.

Our review is not exhaustive; nevertheless, magtiitant works are enclosed. Our hope
is to motivate the reader to inquire further in these works.

This paper serves as an introduction to three astich thdogical combinatorial approach

that appear in this issue Battern Recognition.
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Several tools have been proposed since the begimfhiRattern Recognition, to solve three
important problems: feature selection, supervisddssdication, and unsupervised
classification or clustering. Fukunaga [1] defifeature selection for representatias a
mapping from the original features (or variables) ithtose most efficient; tools are used
for this purpose such as the discrete Karhunen-&a@pansion, the same expansion for
random processes, the estimation of eigenvalueseayehvectors, principal component
analysis [2], and factor analysis [3]. Alseature selection for classificatias defined in
[1] as: given two or more classes, select those festthat are most efficient to preserve
class separability. To solve this problem, one testo discriminant analysis, non
parametric discriminant analysis, sequential selectid quadratic variables, as well as
several selection criteria of subsets of featuhe# bptimize some separability criteria
among classes.

In supervised classificatiorihe problem is to recognize, given a set of objgcbuped into
classes, in which one (or more than one) of thesesedasew objects or measurements
belong. Several classifiers have been proposedinmuax likelihood; Bayesian, (1-nn), k
nearest neighbors (k-nn), linear, quadratic, and othe¥-§l.

In unsupervised classificatiory sample of objects is at hand, but their clusgerito
groups or classes is unknown. The problem consists ininigfsuch classes. To solve these
problems, tools such as ISODATA [7], C-means [8], uesuped Bayesian classifiers [6],
grouping and dividing hierarchical classifiers [9taph-theoretic classifiers [10, 11] are
used, among others.

Work mentioned so far falls under Statistical Ratt@ecognition, characterized because it
works with the descriptions of the objects undadgt contrasting with syntactic structural

recognition [4], which works with thparts of the objects under study. This paper reviews



several articles developed under the Logical Coatbimal Pattern Recognition approach,
in the three areas above mentioned. This appraecthe statistical approach, works with
the descriptions of the objects. In this issue, @ep#l2] introduces the concepts of testor,
typical testor, logical-combinatorial approach, furzstor, and others.

Let U be a (perhaps infinite) universe of objects, antipwing the statistical approach, let
us consider a given finite sampg={O,,...On} of such (descriptions of the) objects. We
shall denote byrR={x,...Xn} the set of features or variables used to studhsehobjects.
Each of these features has associated a set of sldimigalues (its domain of definition)
M;, i=1,...n. These sets of values, in contrast to the othproaghes, can be of any nature:
variables can be quantitative and qualitative simelbaisly. Each of these sets contains a
special symbol denoting absence of information (imgsslata). Thus, some variables are
numeric; other, symbolic; incomplete information about some objects is allowed. This will
turn out to be a fundamental feature of this PatBecognition paradigm. By a description
of an objeciO we understand an n-tupl@O)=(x.(O),...X.,(0)) wherex:M - M;, fori=1,...n

are the variables or features used to describe itr @yve@o algebraic, topologic or logic
structure is assumed. Any of the Pattern Recogniposblems mentioned above is

formulated from a set of descriptionsmfuch objects.

FEATURE SELECTION

Let M be a given set of descriptions mfobjects fromU in terms of the features &. We
assume that the descriptions MF are structured imr subsets (classedy,,...K; (not
necessarily disjoint, not necessarily crisp). Unterse conditions two kinds of problems

can be formulated: feature selection for clasdifice same for description. The first case



tries to find the subset(s) of features that deteemepresentation subspaces of the objects
which are most appropriate for a later problemugesvised classification. In the second
case the objective is not classification of neweoty, but to determine the informational
relevance of each of the features, or of subsetlayh. Feature selection in this field was
initiated by Dmitriev, Zhuravliov and Krendeleiev |1 recent book [25] goes further
into this area.

Ortiz-Posadas [14] applies the logical-combinatamaldel of Pattern Recognition Theory
[15] to the computer-assisted medical diagnostit prognostic. She uses three models: a
medical model, of Heathfieldt al [16], for histopathologic diagnosis of breastedises; a
mathematical model, provided by the logical-comlmnat model of Pattern Recognition;
and a computational model. Her dissertation expldiow to select a suitable set of
variables for the case in question. Some medical resuléaapp[17-18].

A CINVESTAV report [19] presents an extensiontypical testorusing analogy between
patterns, and an algorithm to detkatzy typical testorsf a training matrix.

A short letter [20] extends the expression to deiteenthe feature relevance (that is, how
relevant or discriminant a given feature of an objsktin crisp and fuzzy environments,
and introduces an algorithm (different to that of|J1® compute all the fuzzy typical
testors of a training matrix.

Carrasco-Ochoa [21] analyzes how changes in thartgamatrix affect its typical testors.
He does this for three kind of typical testors: {i9se of Zhuravlev [22, 23]; (2) the
typical testors, which use a similarity functiortyeeen two objects that makes two objects

similar if they differ ine (an integex0) or less feature values; (3) those of Goldman [24].



Lazo-Cortéset al. [12], in this issue, give several contrasting definitiongestor, and
their application in supervised classification. Shntroduces thdogical combinatorial
approachto Pattern Recognition. An excellent introduction is alsa book [25].

Ozols and Borisov [26], in this issue, introdusteadows compositiom order to solve
fuzzy supervised classification.

Martinez-Trinidad and Ruiz-Shulcloper [27], in tiésue, use the fuzzy clustering criteria
of the logical-combinatorial approach, to do unsuiged pattern classification of non-

numerical terms belonging to a vocabulary.

SUPERVISED CLASSIFICATION

In this kind of problems, we assume that the unevérss structured in a finite number
Ki,...K: Of proper subsets, called classes, and from eat¢hemm we have a sample of
descriptions of objects, the so-called training ma#a={ K.,...JK; }. The problem is to
find the membership relations from a new object fidr(outside the given samples) with
ther classes. This relationship does not have to beralbthing. The logical combinatorial
approach deals with spaces without algebraic (omrof other kind of) structure. The
representation space is simply a Cartesian produgth also has the peculiarity of being
heterogeneous, that is, each of the sets formingnitbeaof different nature: a set of real
numbers, a set of labels, a set of truth values faogiven logic, etc. An example of this
appears in medical diagnosis problems, where gegnrs take the form(O)=(black,
female, 45, 38% 1500, ?, slight,...), where ? means absence ofndtion. In other

disciplines, too, such as Geo Sciences, Sociologgagogy, Marketing, etc. (the so called



soft sciences), objects are described in termsialitative and quantitative variables. Thus,
the tools herein presented.

Most significant models of supervised classificatiame those works based qartial
precedenceslhere are three models: voting algorithms, Kora maatel algorithms based

on representative sets.

Voting algorithms

These were conceived in a simplified manner by @Wlev and his group [28]. The main
idea is partial precedence, that is, partial analogiasobject can resemble another object
not in its totality; those parts whiato resemble each other can give information about
possible regularities; of course not all of the sanagnitude. For practical problems in the
disciples cited above, this model was very limited, since it only allows object descriptions
based in Boolean variables. A later paper [25, @8dled some results, producing an
improved parametric model comprising six stepdef)ning the system of support sets; 2)
defining the similarity function; 3) row evaluatiogiven a fixed support set; 4) class
evaluation for a fixed support set; 5) class evadmafor all the system of support sets, and
6) resolution rule. Thus, to define a voting aldunit is to define a set of parameters for

each of the above six steps.

A support set is a non empty subget= {xil,...,xis} of features which shall be used to

analyze the objects. We denote @® the subdescription in terms of the featureof
Thus, a system of support sets denotedXyyare several support sets which together will

allow analysis of the objects to be classified, conmgathem with objects in each one of

the classe& i=1,...r. Note that said analysis is done paying attentbodifferent parts or



subdescriptions of the objects, and not analyzinegdomplete descriptions. Examples of
systems of support sets are the set of typicabrtgstombinations with a fixed cardinality,

combinations with variable cardinality, the power set of feaflete.

A similarity function defines the form to comparestdescriptions (subdescriptions) of the
objects. Ruiz-Shulcloper and his group [25, 29]pms®e to do this starting by determining
the comparison among the values of features, and évagjihese comparisons through a

similarity function. A simple example of similarity fuman is

rl2o,.20,)= yc,(x,0)x,0,)

4o
When the systems of support sets and the similantgtion have been defined, the voting
process starts in the stage of row evaluation; iahe similarity between the different
parts of the objects already classified and thodeetalassified is analyzed. Each row of
MA (each objecO,DMA) is compared with objedD to be classified using the similarity
function". This evaluation is a function of the similaritylw@s among the different parts
being compared. An example of this evaluationgis(O,,0)=y(0 )P(Q)r (Q0,,Q0)
where we consider a weighlO;) associated to each obj&atfrom MA and a weighP(Q)

for the support sed.

The class evaluation for a fixed support Qetonsists in totaling the evaluations obtained

for each of the objectgdlA with respect to the obje@ to be classified. This total evaluation

is a function of the row evaluations already ol#dinAn example of this evaluation is:

¢)(0)= ﬁ qug (0,,0), the upper index refers to the clégs
i t=1,... KJ‘

In the class evaluation for all the system of suppets, evaluations are totaled for all the

system of support sets. Following our example, this steld t@uexpressed as follows:



1

O,

Q; $4(0).

Finally, the resolution rule is a function that éditshes a criterion taking into account each
voting thus obtained, and reaches a decision coimgethe relations of the object to be

classified with every class of the posed problemgéneral, this function has the following

form: r(p*(0),...¢" (0))= (@,(0)....a, (0)). A similar manner to compute the values of

1 if¢'(0)>¢'(0)0i # |
aj(0) i=1,...r., can bex, (0) = E
EJ otherwise

This model for supervised classification has bggpliad to several practical problems [18,
30-33].

An extension to the above model is proposed by 844 where he lets the features be
numeric or linguistic; that is, values can be sontl& or words of natural languages
(fuzzy variables). The similarity between valuestlvd same feature is evaluated in the
interval [0,1], considering as a special case awaloed comparison criteria. An important
element of this new model is that it covers problerassidering fuzzy membership (in

Zadeh’s sense [35]) of the objects to the cladsethis manner, he can work with fuzzy

support sets in which each feature belongs to taioedegree to the support set. For
instance, fuzzy Goldman testors can be used asodugpts. The evaluation of the

similarity between objects, proposed in this work, is summarized in the following general

expression:T(Q0,,Q0, )=|q™ ;/JQ (x,)c, (x,(0,)x,(0,))- This expression considers

the degree of membership of featMgeo the support se®. In addition, ifQ is a fuzzy set,

the scalar cardinality (see Zimmermann [36]) is stdared. In the case of linguistic



variables, one can use as criteria for comparing satfideatures the Hamming, Euclid or
Kolmogorov-Fomin criteria, which are obtained frone thomonymous distances between

fuzzy sets, see [37]. To evaluate by class usiniked support set, one works with

¢g’2(o)=m ¢,(0,,0), if in the formulation of the problem each objéeiongs to
t=1,..TK;|

1
j
only one class. To consider degrees of membershipaoh object to each class, the

expressionqbg'z(o):i Z t (0)9,(0,,0) is used, wherék; Odenotes the scalar
Kj|

|Kj | t=1,...
cardinality of clas;, anduKJ (Ot) denotes the degree of membership of oljgdb class

K, j=1,...r. For evaluation by class for all the system of supgets, one considers the

average of the evaluations, in similar manner asatmer model. Finally, in the resolution

rule can be considered ea¢H(O) j=1,...r, for each class as the fuzzy membership degrees

to the classes, or as the votings for belonging to each class.

Finally we can mention the voting algorithm fordinistic variables [34]. In this model the

problem of classification is posed in similar tertodefining the testors to certain degree,
that is, considering that objects belong with dartdegree to each class. Similarity
functions are defined between object descriptiantgims of linguistic variables, as well as

expressions for row evaluation of a fixed suppettasd for all the system of support sets.

Kora Model
These models start with Bongard’'s group [38], whoppse the Kora-3 algorithm for
solution of Geophysics and Geology problems. Thas whe first algorithm to be used for

solving supervised classification in the Geologeaironment.



Kora-3 rests on the idea that classes are formeabpgcts fulfilling certain complex
properties, composed by the conjunction of three leimppperties. This algorithm is very
limited since it only allows Boolean description of objects, and works only with two non-
intersecting classes. The basic idea is partiatgoience (in similar form to the voting
algorithms), but restricted to the use of relationsy three features. A subset of three

featuresQ :{x. X, X } and a combination of valuesy(ay,az) for Q, form acomplex

feature of classkK; if and only if the triplet &;,a,,a3) appears at leasy times in the
subdescriptions corresponding to the objects Kof and does not appear in the
subdescriptions of objects of the other class. &holgjects in which this combination
appears are callembjects characterizely the complex feature. On the other hand, objects
characterized by less théhcomplex features forrihe reminder of class;KIn this manner,

if two complex features; y r, characterize exactly the same objects, they aredcall
equivalent, and if; characterizes all objects characterizeabgnd at least one more, then
it is said that is stronger than,. Based on these concepts the Kora-3 algorithmfisetk

in three steps: (1) learning step; (2) re-learnireg;s(3) classification step. In the learning
step the complex features are computed for each utasg parameterd, andd,. In the re-
learning stepcomplementary complex featurage computed using new thresholdig< &,
andd,< & in the remainder of the classes. Finally, the diaation step counts how many
complex features of each class characterize or wotvor of the new object to be
classified, and selects the class that provides tgedanumber of complex features. This
algorithm became very limited given the charactessof practical problems, hence the
first extension proposed [39, 40] modified the aptcof a complex feature, allowing now

a combination of three values to appéatimes (sufficiently) in the classes addtimes

10



(sufficiently little) in the other class. Later, Da Vega-Doriaet al. [41] propose an
extension which allows the use of any system ofsetipsets and not only support sets
formed by three features, it is allowed to work witlore than two classes, overlap among
classes is allowed, the type of variables can bepfsart, lack of information is allowed,
and in the most general case, classes can be fuzzyisthaiject belong to a class to a
certain degree. To reach this extension the cormeppmplex feature was modified once

more, giving rise to the concept of fuzgycomplex feature. A combination of values

a=(a,...ap) for the features of a support s@t:{xil,...,xis}, forms ad-complex fuzzy

feature(a,Q) for K;, with degregui((a,Q)), i=1,...r, if and only if: a)JO O K'j | x1(0) = a;;

N M Xp(O) = aps b) ir(gzoj,a)ui (CHET-X C)ir(gzoj,a)(l—ui (0,) <o, and d)

r(QO;,a)y (0))
u((aQ)) = = , wheredi>0 anddi>0 are thresholds. When working with

Zu ©,)

crisp classes, the assumption is th#(a,Q))=1 for all @,Q) associated with; i=1,...r.

This redefinition allows (as formerly mentioned)handle any system of support sets. In
addition, it is considered in the expression theecaf classes being fuzzy and eagh
complex feature has associated a degree of membeosbgid set, calculated in the basis
of the similarity of the combination of valuaswith the corresponding subdescriptions in
the respective class. The set of&@tomplex fuzzy sets fdK; is denoted aR(K;). On the

other hand, the set of all objed®]K; such that F(QO0,a) <n, will be calledn:-

(a, Q)URC(K;)

fuzzy reminder of the clag§ and is denoted bi(K;). In the same manner as in the Kora-3

11



algorithm, the complementary complex features are ctedpin the remainder of the
classes, but now using the new formulation. To eaomplex feature and each

complementary complex feature, one computes a weighimportanceP((a,Q)) as

P((a,Q)) = z P(X,) z r(Q0,a)P(0,) whereP(x,) andP(O;) are the weights of featurg

% 0 0;0K;
and of objectO;. Finally, to classify a new obje@, it is compared with alj-complex
fuzzy features of each claksi=1,...r., in the following manner:

M(QO,a)u; ((a,Q))P((a, Q)

(a,Q)ORC(K;)

z (QO,a)P((a,Q))

(a,Q)JRC(K/)

#; (O) = max

Model based on representative sets

This model [42] is based in partial precedences a&miesentative sets. The idea is to
evaluate information in favor and against obje@hging to classes, and to consider that
the parameters used for classification should becated with each class. In contrast with
previous models, this model can use a differentesyf support sets for each class. The
rationale is that, for a particular class, a comtidmaof features or ranges in values can
provide valuable information to characterize suladss, but one can not conclude that the
same combination behaves similarly for anothersclasence, the model proposes to
determine the system of support sets for each.d€3s denotes the system of support sets

associated with clags; and CK; represents the complement of the class. We defime th

positive representatives SM} for classK; with respect t€2[J{ Q}; as the set of all values

corresponding t@ in the subdescriptions of the objectKinthat are present; times and

are not present in i€K;. Similarly, thenegative representatives smf for classK; with

12



respect tdQ is defined as the set of all values correspontbr@ in the subdescriptions of

the objects irCK; that are preseny; times and are not presentkn The set of all values

corresponding t& in the subdescriptions of the objectskpfthat are not elements neither

of the negative representatives set nor of the igesiepresentatives set form theutral

set of combinationgor classK; denoted byMjA. The algorithm rests on these three

concepts. This method differentiates between tli@rmational value of features and of

objects, which can be calculated in some other we®,[20, 25], or be given by the expert.

The first proposal of this model is Boolean, that@siders descriptions of objects formed

by Boolean features only. Thus, the algorithm isddfjne the systems of support sets (and

their associated parameters) for each class; 2) uentpe setsV;, M’ and M for each
class; 3) to classify a new obje@t computeg, (QO) for each support s€ of each class
K; j=1,...r. This expression is defined in three cases:

$,(Q0)=(p(x }....#plx. plQO, }+....+plQ0, )) if QOTM?, wherep(x) is the weight
of the variables conformin@ andp(QO;) means the weight of objeG[K; that coincides

with O according tdQ;
b) ¢,(Q0)=(px, }+...+plx NplQO, }+....+plQO, ) if QOOM?, where p(x) is as
before, ang(QO;) means the weight of objeC;[ICK; that coincides wittD according to

Q; ¢) ¢,(Q0)=0 if QOOM?. 4) In this step the total evaluatigh (O) is computed for
each clas; j=1,...f., as @(O)z@ %qu(QO). 5) Finally, compute the r-tuple
j| QU

(a1(0),....0:(0)) in which one finds the membership relatim(O) of objectO for each one

13
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i if ¢,(0)>0

0
of ther classes, as followsr, (O): %J if @, (O)< 0. This model proved to be of limited
U
.
g if ¢,00)=

use for solution of practical problems, where otgetae described by features that can take
any kind of values. Thus, an improvement is prodose [25], which allows such
descriptions (and values) but defines the comparisarieriio yield Boolean values. In this

manner, a similarity function among two subdesmi is defined, which can be used to

determine if a subdescription belongs k;, M7or M} in the same manner as in the

Boolean case, but now verifying if they are similar rot. For this, the following

expressions are evaluated:

(0) = (plx, Jr...+ plx ))E 3 PO)r(20.90)+x, 3 pO)r(e0. Qo); and

|

97(Q0)=(plx, Jr....ct p(xis))S(l S p(0)r(0.20)+x, ¥ p(0)F(Q0.Q0 ), where

g ofxk, OK, g
p(x), p(G;) are weights associated to the features and objegtg: are weight factors and

I takes values opposite to thoselofWe then decide if0 is in M , M?or MjA as
follows: a) QOOM | if ¢7(Q0)-¢;(Q0)>35;b) QOOM? if ¢;(Q0)-¢;(Q0)>35; and

c) QOOIM? if

j*(QO)—¢j‘(QO)‘<5. Except for these changes, the previous algorithm

remains the same.
Carrasco [43] proposes an extension to [42], inctvlmbjects can be described by features
of any kind, classes do not need to be disjoint; they can be fuzzy, although imposing the

restriction that for every class there must existeast one object that is closer to totally

14



belonging to the class than of not belonging toclhass, which is reasonable, since this is a
problem of supervised classification. This extensgreached by extending the concept of

positive, negative and neutral representatives ast$ollows. LetQ be a support set for
cIassKj. The positive representatives set for clléjswith respect td, denoted byl\/ljl, is

defined as the set of allQO, such that: 1) OOOMA | QO=QO0,,

2) iF(QOi .Q0,)a;(0) 2n;; 3 Z r(Q0,Q0,)1-a;(0)) <4;;

S r(Q0,,Q0,)a,(0)
4) 1;(Q0,) ==

, where ;,(Q0,) denotes the degree by which the

m

> ,(0)

combination of value€QQO, is positive representative df;; a;(O) is the degree of
membership oD to the clas¥; and (1&;(O)) represents the degree of membership to the
complement ofK|, n; represents the minimum similarity threshold @0, with all the
objects inKj; § represents the maximum similarity thresholdQ®, with respect to all

objects in the complement d. Analogously, the negative representatives Ivlqgt IS
redefined by interchanging in expressions 2), 3§ &), a;(O) by (1-0;(0)). The

combination Oy, that are not inM ; nor in M? will be neutral combinations and shall be
denoted byM JA The informational relevance of a positive (negatirepresentativO,

for a classK;j, is denoted byP(QO,), and it is computed by the expression

P(QO,) :(p(xil)-k,...,+ p(xis ))i p(O, ,(0,)(Qa,Q0,). Given an objec to classify,

15



the total positive evidence, denoted :b].i/(O), and the total negative evidence, denoted by

¢, (O), are computed for each one of the clas§es1,..r as follows:

O Z Z M(QO,Q0,)P(Q0,) if the clesses arerisp sets
0iQi...Q) } Qo,00M]
¢ (©O)=0
D Z Z M(QO,Q0,)P(Q0,)u(Q0,) if the clesses areuzzy sets

0] 1
m)[l{cz‘1 ,...Q;i} QO,UQM;

Z M(QO,Q0,)P(QO0,) if theclasses ag crisp sés
SR (eIl Q0,00M]
¢, (0)=
z M(QO,Q0,)P(Q0,)u(Q0,) if the clesses areuzzy sets

Q(o}-.Q ) Qo ToM!
o1

I:II:IPI:II:II:IP

and then the total evaluatigh (O) is computed for each claks j =1,..r, as follows:

if $7(0)=¢7(0)=0

Mmoo

$,(0)=0
E ¢;(0)+¢7(0)
Emax¢; (0)¢;(O) |}

otherwise

This evaluation estimates the membershi@ af cIassKj. 1) If working with crisp classes,
1 if ¢i(O)>0
U
use:aj(O) = @) if ¢,(0)<0 in this case * denotes abstention.
O
o
g if q’)i(O):O
2) For fuzzy classes use:

[05+¢ (O)2maxu, (0} -1 if ¢,(0)=0
0 O.0MA
aj(O) =0 .
H05+¢,(0) if $(0)<0
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A detailed study of supervised classification aiyons based in partial fuzzy precedence is
given in [44].

In Logical Combinatorial Pattern Recognition, someeotmodels of supervised classifica-
tion have been proposed. Such is the case of #igwibased in the weight of the patterns
[25, 45], among which we find: voting algorithmbBpse based in the ideal of the class, and
algorithms based in exactness thresholds.

Another model of supervised classification is tHgoathms based in typicality and
contrast. This model was initially proposed by Demko and Vaskovskii [46] for the
solution of problems with geologic anomalies, itggmse was not to classify geological
regions, but to structure their data so as toifat#l the classification. Based on these ideas,
Vega [47] extended the algorithm and developed arsiged classification algorithm
based in notions of typicality and contrast. Thegtigular algorithm has been used to

classify patients with cleft palate [48].

UNSUPERVISED CLASSIFICATION

In this problem it is assumed that the structuremberseU is not known. To find such
structure, in general a sub3¢k of U, the initial sample, is given. On occasions thenber

of groups that there should result (or the numlesirdd), is known, and the problem is
termed restricted unsupervised classificatio®n other occasions, this number is also
unknown f{ree unsupervised classificatipnHere, only a representation space that is a
Cartesian product without further properties isdusene problem is precisely to find the

classes, the groupings. Such groups need not be formeppets.

Free unsupervised classification

17



The first tools in this field appear in Sirotinskd#9], who proposes the CLASS algorithm.
This is a hierarchical algorithm and was written atve geology prospecting problems. It
is based in the concept of a compact set. A sgtiNaJcompact set if and only if

a)JO,OMI

[OONU; O (maxr (9., Q ) =r(0, 9)2B, 0 maxr (9. Q ) =T (0, 0) 25,)] O QONU;;

O,OMI
0,20, 0,20,

b)JO,O0NU; 0O, ,....Q ONU,

© =0, 00Q=0, 00p0L..a-1k [maqr@,.Q) =7(0,.0,, )2 B O

00,

max{l' Q... Q } =M'(0; . O, )=L,ll

o.Ml
0,20,

c) Every isolated object constitutes &-compact(degenerate) set. This definition was
proposed by Martinez [50,51]. The definition of [49] doesapgtear here.

The CLASS algorithm is summarized as follows: step Infute the values of all possible

pairs of MI; that is, form a similarity matrix M41IE(Oi 0, }|mxmwherem is the number of
. . _ 2 m-1 m .
objects ofMI; step 2) Compute3, _mz:l ZFHI’(Oi ,Oj), step 3) Compute the

Bo-compact sets; step 4) Compute the similarity messiamong all compact sets

NUj,...NU. using the expressior:(NU_,NU, )= Wzg ‘qNU“‘F(Ot,Oq); step

5) compute a neygy' from the matrix of comparisons among nuclei, agyukeat steps 4 and
5. In this same sense Ruwt al. [29] propose a modification based in the HOLOTYPE
algorithm (originally proposed by Y.A. Voroniet al [52] for supervised classification)

giving rise to a new algorithm analogous to CLASS bow using the concept of
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connected set —which is the one used by HOLOTYPEetANU is aconnected sdf and

only if: @) JG;, GLINU;, DOil,...,QqD NU;

[Oi:O-

 00=0, [0 pK1,..0-1} 1 (O, , O, )2f,]
b) DO,OMI [(O;0NU;, T (O, )=, ) O OONU|]

c) Every B,-isolated object is af,-connected(degenerate) set. This definition was
proposed by Montellano [53, 54]. The definitioncannected set of [52] does not appear
here.
Also, the TAXDIF model [53, 54], based on graphdjick allows the descriptions of
objects to be given by features of any kind, wagetigped. It proposes crisp and fuzzy
clustering criteria for grouping of objects, simil@ the compact and connected criteria
used in CLASS and HOLOTYPE. A significant contriloumtiin this new model is the
definition of crisp grouping criteriofl. This definition generates several grouping dater
including the connected and compact criteria. Sinyijjale model defines the concept of
fuzzy grouping criteriorfly which allows, from a crisp structuring generatgdabcrisp
criterion 1, the generation of a fuzzy structuring of the o sample. That is, in the
result, each object belongs in different degreeeéch of the clusters (clouds). Also,
TAXDIF is flexible in handling several similarityihctions, which can be partial functions
and be defined using support sets, such as those used iviseghetassification, see [25].
As example, the membership function defined for nemted sets is:
if NU, ={0.}

He (0,)=0 . The detailed definition of other fuzzy

Ealuﬁéﬁo‘}{r 0,0, )} otherwise

criteria is given in [51]. Membership of an objécta crisp connected set is given by the
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fulfillment of certain similarity properties, whicéstablish the definition of crisp grouping
criterion. Similarly, the degree of membership ofadnjectO; to a connected (fuzzy) cloud
is given in terms of the degree of fulfillment of said prapert

This model is an alternative to the C-means fuzggraghm, which is defined for numeric
features. The model of TAXDIF algorithms can be desdrinethe following steps: step 1)
Define the similarity functior'; step 2) Determine threshof#; step 3) Define the fuzzy
grouping criteriomy ; step 4) Generate the family of crisp groupingstep 5) Define the
family of fuzzy groupings or clouds correspondingrt Varying the parameters results in
different algorithms.

Due to the features of the model and its potemighe solution of problems such as those
present in soft-sciences, a theoretical study vemopned, about the set relations among

the groupings generated by several grouping criteria.

Fig. 1

This study shows that for the sarfigvalue, the structures (groupings) found for sdvera
grouping criteria are related (see figure 1). Fetance, connected groupings are unions of
compact groupings. Other relations are in Martieeal. [51]. This hierarchy imposes an
order among the structures or groupings, follovilmgjr generality, which can be of use in
practice. Low levels contain very specific categofiasluding isolated prominent objects);
upper levels are formed by more general structdres disposition of said structures can
provide, for a same universe of objects, diffenasions, with different abstraction levels.

[55] proposes these tools for the solution of sdmagrouping problems, in this case
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objects are related key words from documents, hadptoblem is to find word groupings

based in semantic similarity. [27] proposes an dlgor for constructing classes of a

thesaurus.

Now a days, unsupervised classification tools mgé information volumes are being

developed [56]. Also, conceptual unsupervised elus) has been proposed [57-60]. In
these works one finds contributions to the so-da(ie machine learning) unsupervised
learning or conceptual clustering. The problemfiem a set of objects, find how these
objects are grouped and, in addition, find the progs or concepts that objects in each
group satisfy. This research line has aroused rmiehest, in recent years, for its potential

in data mining problems.

Restricted unsupervised classification

Logical Combinatorial Pattern Recognition has dedotess effort to these problems.
Nevertheless, algorithms have been proposed wherenimber of desired clusters is
specifieda priori. For instance, Garcia and Martinez [61, 62] proposetbdification to
the C-means algorithm allowing object descriptidasbe of any nature. Keeping the
original structure of the algorithm, they use, indted a distance measure, a similarity
measure among objects, such as those of [25]. Trh#asty function must fulfil: 1)

I‘(OJ.,OK)D[O,l] for 1gjsm and kk<m (m is the number of objects to group); 2)
I‘(Oj O, )=1 for kj<m; and 3)I'(Oj ,Ok):l'(Ok,Oj) for I<jsmand kk<m. Letu, be the

membership degree of objedf in groupingC,, and letR™ be the set of all real matrices

cxn. Any c-partition [61] of the data set is represdnby a matrixU=[u,]OR™, which

satisfies: 1u,[{0,1} for 1<j<m and kk<m; 2) Z;“‘k =1 for 1<ksm; and 3)211“« >0 for

21



1<i<c. Then, the partition matrik) is determined by the maximization of the objective

function given byJ(U)= Z;zm u,(or,0,) where F(O{,Ok) is the similarity between

k=1 K
the most representative objd@f (“the center”) in groupind, and objecO,. Notice that in

this case “the center” is an object belonging tos@eple, instead of a fictitious element
such as in classical C-means. Working with a sintjlarieasure (and not with a distance)
implies that the calculation from seeds can not béizezh by using centroids (as the

original work does, since it works in multidimensa metric spaces). [61, 62] proposes a
way to compute these representative objects, usimgasity. Once these elements are

found the functional J(U) is maximized whenu, is determined as follows:

0 ifr(0r.0,)=mar(o;.0.}

I<gsc
U, =0 . That is, objecO, shall be assigned to the cluster

%) otherwise

having its representative object most similar vdth

Thus, the algorithm is: step 1) Selecbbjects in the sample as initial seeds. iix the
maximum number of iterations, and s@t0; step 2) Compute the partition mattixU™
using the previously mentioned initial seeds; step 3) Deterthe representative objects of
the groupings of matrix/™); step 4) Compute the partition matki"™V; step 5) If the set
of representative objects is the same as in theitlmtion, stop. Otherwise, increment
ni=ni+1; step 6) Ini>ni’ stop. Else, go to step 3.

More recently, other restricted unsupervised clasdgibn algorithm [64] has been
proposed, based in the concept of connected seintByducing suitable concepts and
results, this algorithm works with any similaritynittion and with data described by

features of any kind. Also, it determines theosdtichow many different ways there are to
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partition a space into connected components, theevaf thresholdsB, characterizing

them, and the cardinality of each of these patrtitions.
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